Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Cinnamoyl shikonin ${ }^{1}$

Sanjay Sarkhel, ${ }^{\text {a }}$ Shefali, ${ }^{\text {b }}$ Vijayvitthal T. Mathad, ${ }^{\text {b }}$ Kanwal Raj, ${ }^{\text {b }}$ Amiya P. Bhaduri, ${ }^{\text {b }}$ Prakas R. Maulik, ${ }^{\text {a }}{ }^{\text {C Charlotte K. }}$ Broder $^{\text {c }}$ and Judith A. K. Howard ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226 001, India, ${ }^{\mathbf{b}}$ Medicinal Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India, and ${ }^{\text {c }}$ Department of Chemistry, University of Durham, Durham DH1 3LE, England
Correspondence e-mail: maulik_prakas@yahoo.com

Received 27 March 2001
Accepted 12 July 2001
The title compound, 1-(5,8-dihydro-1,4-dihydroxy-5,8-dioxo-2-naphthyl)-4-methylpent-3-en-1-yl cinnamate, $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{6}$, crystallizes in space group $P 2_{1}$. The phenyl ring of the cinnamate is anti to the carbonyl group of the same moiety $\left[\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}=-175.6(2)^{\circ}\right]$ and is nearly parallel to the naphthyl ring system. Two six-membered rings formed by intramolecular hydrogen bonds, with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distances of 2.587 (2) and 2.589 (2) \AA, occur on either side of the fused ring system, creating a tetracyclic pyrene-shaped system. The phenyl ring forms an intermolecular stack with the benzoquinone ring, as a result of aromatic $\pi-\pi$ interactions.

Comment

Arnebin-1 (β, β-dimethyl acryloyl shikonin), a naturally occurring naphthoquinone from the root of the plant Arnebia nobilis, belongs to the alkanin/shikonin family (Shukla et al., 1969). The toxic effects of this compound restricted its further development as a clinically useful therapeutic agent, in spite of its wound healing, anti-inflammatory, antithrombotic, antimicrobial and anticancer activities (Papageorgiou et al., 1999). This necessitated the development of numerous analogues of shikonin with greatly reduced toxicity. One such analogue is the title compound, (I), which shows a growth-inhibitory effect on prostate cancer cells (Gaddipati et al., 2000). This prompted us to undertake the present diffraction study in order to confirm the overall three-dimensional structure of (I).

The conformation of (I) and the atom-numbering scheme are shown in Fig. 1. The molecule contains one napthaquinone ring $(A / B$ fused ring system), to which a phenyl ring (C) is attached via an ester bond, and one chiral centre (C11). Although the present study does not establish the absolute configuration of the molecule [Flack (1983) parameter 0.3 (9)], the parent shikonin has the R configuration, as determined by the chemical degradation method (Arakawa \& Nakazaki, 1961). The phenyl ring C is almost parallel to the

[^0]A / B ring system; the interplanar angle between the two rings is $1.7(1)^{\circ}$. Moreover, the phenyl ring at C 19 is anti to the carbonyl group at $\mathrm{C} 17\left[\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20=-175.6(2)^{\circ}\right]$.

(I)

The molecule of (I) contains two potential hydrogen-bond donors (-OH groups $\mathrm{O} 5-\mathrm{H} 5$ and $\mathrm{O} 8-\mathrm{H} 8$), which are involved in intramolecular hydrogen-bonding interactions with carbonyl groups $\mathrm{C} 4=\mathrm{O} 4$ and $\mathrm{C} 1=\mathrm{O} 1$ (Table 2) through the formation of six-membered rings (Fig. 1). The formation of such rings is preferred to intermolecular hydrogen bonding (Bilton et al., 2000). The strong intramolecular O . . O distances observed in (I) are in the same range as those found in the parent naphthazarin C at 60 K (Herbstein et al., 1985).

The hydroxyl H atoms, H 5 and H8, were located in a difference Fourier map, in view of the ambiguity with regard to their positions in related naphthazarin systems (Herbstein et al., 1985). A comparison of bond lengths in (I) with those of naphthazarin C (neutron diffraction at 60 K) and other related systems (Herbstein et al., 1985, and references therein) shows that, on average, $\mathrm{C}=\mathrm{O}$ is $c a 0.05 \AA$ longer in (I), while $\mathrm{C}-\mathrm{OH}$ is $c a 0.03 \AA$ shorter. This suggests that, in close analogy with the crystal structure of naphthazarin C , the hydroxyl H atoms are not completely localized in (I) at 100 K and ordering will be favoured at lower temperatures, since a complete localization is only possible at 0 K .

In addition, weak hydrogen-bonding interactions of the type $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ are also observed (Table 2). The crystal packing (Fig. 2) further shows that the phenyl ring C stacks

Figure 1

The molecular structure of (I) with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii and intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds are shown by dotted lines.

Figure 2
The packing in (I), showing the intermolecular stacking of rings C and A as a result of aromatic $\pi-\pi$ interactions.
with the benzoquinone ring A, as a result of aromatic $\pi-\pi$ interactions. The average intermolecular stacking distance and the angle between the rings, which overlap substantially in a 'face-to-face' orientation as per the model proposed by Hunter \& Sanders (1990), are $3.3 \AA$ and $1.1(1)^{\circ}$, respectively. Since the benzoquinone ring is electron deficient, it can allow a substantial face-to-face overlap with the relatively neutral phenyl ring without much $\pi-\pi$ repulsion.

Experimental

The synthesis of (I) was carried out by hydrolysing β, β-dimethyl acryloyl shikonin with sodium hydroxide, followed by esterification with cinnamic anhydride and 1,3-dicyclohexylcarbodiimide. Crystals of (I) of diffraction quality were grown from a hexane-methylene chloride solution at room temperature.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{6}$
$M_{r}=418.43$
Monoclinic, $P 2_{1}{ }_{2}{ }^{2}{ }^{2}=6.1677(10) \AA$
$b=15.7416(3) \AA$
$c=10.5141(2) \AA$
$\beta=90.7630(10)^{\circ}$
$V=1020.72(3) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.361 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 510 \\
& \quad \text { reflections } \\
& \theta=4.1-27.4^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.5 \times 0.1 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: ψ scan
(XPREP; Sheldrick, 1994)
$T_{\text {min }}=0.885, T_{\text {max }}=1.000$
7463 measured reflections
4357 independent reflections
4011 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 7$
$k=-20 \rightarrow 20$
$l=-13 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.096$
$S=1.09$
4357 reflections
290 parameters

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0219 P)^{2}\right. \\
\quad+0.7688 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.25 \mathrm{e}^{-3}
\end{aligned}
$$

independent and constrained refinement

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.3(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$-1.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.7(3)$	$\mathrm{C} 7-\mathrm{C} 11-\mathrm{O} 11-\mathrm{C} 17$	$148.35(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$2.4(3)$	$\mathrm{C} 11-\mathrm{O} 11-\mathrm{C} 17-\mathrm{C} 18$	$176.89(18)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.9(3)$	$\mathrm{O} 11-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$12.0(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.3(3)$	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$-175.6(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.3(3)$	$\mathrm{C} 25-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$-0.8(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.2(3)$	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$0.6(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10$	$1.4(3)$	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$0.3(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$1.0(3)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$-0.9(4)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-0.4(3)$	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 25-\mathrm{C} 24$	$0.1(3)$
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$-0.6(3)$	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 20$	$0.7(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 4$	$0.87(3)$	$1.81(3)$	$2.587(2)$	$148(3)$
O8-H8 \cdots O1	$0.88(4)$	$1.79(3)$	$2.589(2)$	$150(3)$
C3-H3 $\cdots \mathrm{O} 17^{\mathrm{i}}$	0.93	2.47	$3.356(3)$	160
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.98	2.56	$3.359(3)$	138
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.96	2.72	$3.631(3)$	159
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 4^{\text {iv }}$	0.93	2.62	$3.538(3)$	170

Symmetry codes: (i) $1+x, y, z-1$; (ii) $x-1, y, z$; (iii) $x, y, 1+z$; (iv) $x-1, y, 1+z$.
structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: NRCVAX (Gabe et al., 1989), ORTEP (Johnson, 1965) and PLUTO (Motherwell \& Clegg, 1978).

SS thanks CSIR, India, for a Senior Research Fellowship. CKB and JAKH thank the EPSRC for their support. We thank the referee for pointing out the disorder aspects of the hydroxyl H atoms in naphthazarin.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1171). Services for accessing these data are described at the back of the journal.

References

Arakawa, H. \& Nakazaki, M. (1961). Chem. Ind. (London), p. 947.
Bilton, C., Allen, F. H., Shields, G. P. \& Howard, J. A. K. (2000). Acta Cryst. B56, 849-856.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gaddipati, P. J., Mani, H., Shefali, Raj, K., Mathad, T. V., Bhaduri, A. P. \& Maheshwari, K. R. (2000). Anticancer Res. 20, 2547-2552.
Herbstein, F. H., Kapon, M., Reisner, G. M., Lehman, M. S., Kress, R. B., Wilson, R. B., Shiau, W.-I., Duesler, E. N., Paul, I. C. \& Curtin, D. Y. (1985).
Proc. R. Soc. London Ser. A. 399, 295-319.
Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
Johnson, C. K. (1965). ORTEP. ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. University of Cambridge, England.
Papageorgiou, V. P., Assimopoulou, A. N., Couladouros, E. A., Hepworth, D. \& Nicolaou, K. C. (1999). Angew. Chem. Int. Ed. 38, 271-300.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1994). XPREP in SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shukla, Y. N., Tandon, J. S., Bhakuni, D. S. \& Dhar, M. M. (1969). Experientia, 25, 357-358.

[^0]: ${ }^{1}$ CDRI Communication No. 6153.

